Spiga
Showing posts with label Parkinsonism. Show all posts
Showing posts with label Parkinsonism. Show all posts

Nintendo Wii May Enhance Parkinson's Treatment

Share

Dr. Ben Herz.
The Nintendo Wii may help treat symptoms of Parkinson's disease, including depression, a Medical College of Georgia researcher says.Parkinson’s disease is a degenerative disease that impairs motor skills. Dr. Herz theorized that the popular computer game console, which simulates various sports and activities, could improve coordination, reflexes and other movement-related skills, but he found additional benefits as well.

"The Wii allows patients to work in a virtual environment that's safe, fun and motivational," says Dr. Ben Herz, program director and assistant professor in the School of Allied Health Sciences Department of Occupational Therapy. "The games require visual perception, eye-hand coordination, figure-ground relationships and sequenced movement, so it's a huge treatment tool from an occupational therapy perspective."

In an eight-week pilot study, 20 Parkinson’s patients spent an hour playing the Wii three times a week for four weeks. The patients, all in a stage of the disease in which both body sides are affected but with no significant gait disturbance yet, played two games each of tennis and bowling and one game of boxing—games entailing exercise, bilateral movement, balance and fast pace.

"By the middle of the study, we actually had a number of people who could [defeat] their opponent out in the first round, which amazed us," says Dr. Herz, who presented his preliminary findings at the fifth annual Games for Health Conference today in Boston.

The victories weren't the biggest surprise, however. Participants showed significant improvements in rigidity, movement, fine motor skills and energy levels. Perhaps most impressively, most participants' depression levels decreased to zero.

An estimated 45 percent of Parkinson’s patients are reported to suffer from depression, though Dr. Herz suspects the actual figure is much higher.

Studies have shown that exercise and video games independently can increase the production of dopamine, a neurotransmitter deficient in Parkinson's patients. He suspects that's the case with the Wii’s exercise effect. Dopamine also helps improve voluntary, functional movements, which Parkinson’s patients "use or lose," Dr. Herz says.

Wii, which features simulated movements such as cracking an egg, swinging a tennis racket and throwing a bowling ball, responds to a player's movements rather than cues from a controller, so players can do full body movements and see their progress on a screen.

"I think we're going to be using virtual reality and games a lot more because it provides a controlled physical environment that allows patients to participate in the activities they need or want to do. A patient doesn't have to go to a bowling alley and worry about environmental problems or distractions," Dr. Herz says.

Dr. Herz's research was funded by a $45,000 grant from the National Parkinson's Foundation. Next he plans to test the Wii Fit balance board with Parkinson's patients and expand his studies to multiple sites.

"Game systems are the future of rehab," Dr. Herz says. "About 60 percent of the study participants decided to buy a Wii for themselves. That speaks volumes for how this made them feel."

Calculating Gene And Protein Connections In Parkinson's Disease Model

Share


A novel approach to analyzing cellular data is yielding new understanding of Parkinson's disease's destructive pathways.Researchers have created an algorithm that meshes existing data to produce a clearer step-by-step flow chart of how cells respond to stimuli. Using this new method, Whitehead Institute and Massachusetts Institute of Technology scientists have analyzed alpha-synuclein toxicity to identify genes and pathways that can affect cell survival. Misfolded copies of the alpha-synuclein protein in brain cells are a hallmark of Parkinson's disease.

Until now, data on gene expression and protein production have not been consistently analyzed together, leaving gaps in researchers' understanding of how various genes and proteins interact to form a cell's response to a stimulus. This new method could speed the development of therapies for a variety of diseases, including Parkinson's disease.

The scientists have employed this new computational technique to analyze alpha-synuclein, a mysterious protein that is associated with Parkinson's disease.

Cells are constantly adapting to various stimuli, including changes in their environment and mutations, through an intricate web of molecular interactions. Knowledge of these changes is crucial for developing new treatments for diseases. To decipher how a cell responds to various stimuli, laboratories worldwide have been turning to new technologies that produce vast amounts of data. Such data typically exists in two major forms: genetic screen data (the results from deleting a gene from a cell's genome and seeing what observable traits appear in the cell) and information on the cellular levels of messenger RNA (mRNA, which is the template for proteins).

Historically, these two types of data have largely been analyzed independently of each other, revealing only glimpses of the cell's internal workings. Each type of data is actually biased toward identifying different aspects of cellular response, something that researchers had not realized until now. However, the new algorithm, known as ResponseNet, exploits these biases and allows for combined analysis.

In this combined analysis, both data types are integrated with molecular interactions data into a diagram that connects the experimentally identified proteins and genes. While this typically results in an extraordinarily complicated diagram, sometimes jokingly referred to as a "hairball", ResponseNet is designed to whittle the hairball down to the most probable pathways connecting various genes and proteins.

Esti Yeger-Lotem, a postdoctoral researcher in the laboratories of Whitehead Member Susan Lindquist and of Ernest Fraenkel at MIT's Biological Engineering department and co-author of the Nature Genetics article, says that by analyzing those probable pathways, a systems view of the cellular response emerges. "This allows for a more complete understanding of cellular response and can reveal hidden components of the response that may be targeted by drugs," she says.

According to Laura Riva, a postdoctoral researcher in MIT's biological engineering department and one of the designers of the algorithm, ResponseNet is potentially very useful for researchers.

"It is a powerful approach for interpreting experimental data because it can efficiently analyze tens of thousands of nodes and interactions," says Riva, who is also a co-author on the article. "The output of ResponseNet is a sparse network connecting some of the genetic data to some of the transcriptional data via intermediate proteins. Biologists can look at the network and understand which pathways are perturbed, and they can use it to generate testable hypotheses."

To demonstrate ResponseNet's capabilities, Yeger-Lotem entered the data from screens of 5,500 yeast strains (Saccharomyces cerevisiae). These strains are based on a yeast model that creates large amounts of the protein alpha-synuclein, thereby mimicking the toxic effects of alpha-synuclein accumulation in Parkinson's disease patients' brain cells.

Ernest Fraenkel, Assistant Professor of Biological Engineering at MIT, says that the alpha-synuclein data are an excellent test case for the algorithm, which has lead to new insights from existing data.

"The connection between alpha-synuclein and Parkinson's disease is enigmatic," says Fraenkel. "We have wonderful data from the yeast model, but despite this richness of data, so little is known about what alpha-synuclein really does in the cell."

Using these data, ResponseNet identified several links between alpha-synuclein toxicity and basic cell processes, including those used to recycle proteins and to usher the cell through its normal life cycle.

Surprisingly, ResponseNet also tied alpha-synuclein toxicity to a highly-conserved pathway targeted by cholesterol-lowering statin drugs and another pathway targeted by the immunosuppressing drug rapamycin.

To confirm ResponseNet's links and to test how these two pathways could affect alpha-synuclein toxicity, researchers added either rapamycin or the statin lovastatin to yeast model cultures. When the researchers added a low dose of rapamycin to the yeast model, the drug was toxic to the yeast. When lovastatin was added, the yeast reduced their growth rate, an indicator that the yeast had gotten sicker. However, when researchers added the molecule ubiquinone (also known as coenzyme Q10 or CoQ10), which is farther downstream in the statin network and possibly undersynthesized in alpha-synuclein-containing yeast, ubiquinone modestly suppressed alpha-synuclein toxicity.

All of these results validated the hypotheses based on ResponseNet's network.

"ResponseNet provides a wealth of new information," says Lindquist, who is also a Howard Hughes Medical Institute investigator and a professor of biology at MIT. "Some of the things we have found offer a promise to speed the development of new therapeutic strategies for Parkinson's disease. For the sake of the patients involved, let's hope they hold true in a human brain."

Full Citation: "Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity"

Nature Genetics, online February 22, 2009